
BasicQuery

Taken from a presentation to the CDJDN covering
SourceForge, BasicQuery and Basic XSLT.

The original presentation can be found at:
http://www.blueslate.net/Presentations/

David Read
CTO
Blue Slate Solutions

June, 2006

© Blue Slate Solutions 2006

1

Agenda

� BasicQuery

� Operation

� Source Code

© Blue Slate Solutions 2006

2

BasicQuery

� BasicQuery is a Java-based application used to access
databases through JDBC. It features a Swing-based GUI and
includes capabilities useful to developers. It also produces timing
information, which is valuable during tuning exercises.

� Latest Release Notes (version 01.02.00):

� Production release encompassing support for 6 languages, soft-
reference-based results cache and numerous options for controlling
application behavior, including reporting of client and server details.
Given the variety of improvements over the last production release,
it is well worth your time upgrading. On the source code side, this
version completes the integration of log4j, JUnit and Cobertura. The
test suite is fairly complete, other than automating the testing of the
GUI components.

© Blue Slate Solutions 2006

3

basicquery.sourceforge.net

© Blue Slate Solutions 2006

4

Operational Highlights
� Support Provided for 6 Languages

� Report DB Server Information

� Caching of Previous Results

� Control of Result Row Display Coloring

� Memorized Queries can be Reordered

� SQL Statement and Corresponding
Connection String can be Linked

� Clipboard Support is Provided for Copying
Result Rows

� Stores Each Connection URL

� Stores Each SQL Statement

� Displays Result Set Data in a Table

� Provides Details of Each Statement
Execution

� Optional Use of a Pooled Connection

� Control of Auto-Commit on the JDBC
Connection

� Control of Read-Only Setting on the
JDBC Connection

� Use Multiple SQL Statement Files

� Logging of SQL Execution Statistics to a
CSV File

� Log All Select Query Result Data

� Write Current Select Results to CSV File

� Save BLOB Field Contents to a File

� Raw Export Mode

� Prevent Line Breaks Between Records

� Sort By Multiple Columns

� Create a Select Query Based on the
Current Results

� Create an Insert Statement Based on the
Current Results

� Create an Update Statement Based on
the Current Results

� Create a Select * Query Based on the
Selected Cell

� Obtain Metadata Based on Selected Cell

� Run All Queries as a Batch

� Create Parameterized SQL Statements

� View Metadata Based on a Select
Statement

� Limit Rows Retrieved

� Remove a SQL Statement from the Set of
Stored Statements

� Comment-out a SQL Statement in the Set
of Stored Statements

© Blue Slate Solutions 2006

5

Interface

User Id/Password

Connect Strings

SQL History

Current SQL

Row Limit

Statement Type

Results

Messages

Query: Run Delete Comment-Out Next in History

© Blue Slate Solutions 2006

6

File Menu

Open SQL File
Groups of SQL statements may be stored in
separate files, this options loads or creates a file of
SQL statements

Log Stats
Appends all execution statistics to a CSV file

Log Results
Appends all query results to a CSV file

Export Results as CSV
Writes current results to a CSV file

Save BLOBS
Writes any BLOB field(s) in the currently selected
row to individual file(s)

Raw Export
Write embedded CR/LF to CSV file

No CR Added to Export
Do not place a CR at end of each record in CSV file

© Blue Slate Solutions 2006

7

Query Menu

Select Statement
Using the current results, create a select statement where

each column is separately named
Insert Statement

Using the current results, create an insert statement where
each column is separately named

Update Statement
Using the current results, create an update statement where
selected columns are used for a where clause and the
remainder are in the set clause

Select *
Create a select * statement where table name is data in the
selected cell

Describe Select *
Create a select * statement where table name is data in the
selected cell and query type is set to “Describe”

Reorder Queries
Allow query history to be manually reordered

Run All Queries
Run each query in the query history a given number of times

© Blue Slate Solutions 2006

8

Setup Menu

Language
Override the system default language

Display DB Server Info
Report DB server metadata in the messages area

Results Row Coloring
Apply an alternating color scheme to the result
display

Associate SQL and Connect URL in History List
Cause the connect URL to change based on which
connection was last used for a given SQL
statement

Display Column Data Type
Include column metadata in the results column
heading

Display Client Info
Report client information in the messages area

Save Password
Insecurely store the last password used

© Blue Slate Solutions 2006

9

Parameter-Based SQL

� Sometimes you are calling stored procedures or
functions that require IN and/or OUT parameters.

� BasicQuery supports a syntax for this purpose.

� IN Parameters

� $PARAM[IN,DataType,YourData]$

� e.g. $PARAM[IN,String,Albany]$ creates an IN
parameter of type String with the value Albany.

� OUT Parameters

� $PARAM[OUT,DataType]$

� e.g. $PARAM[OUT,Integer]$ creates an OUT
parameter of type Integer.

© Blue Slate Solutions 2006

10

Example of Parameter-Based SQL

� Imagine a DB function that takes two IN parameters (integers) and
returns two OUT parameters (integers - the sum and difference
respectively). Further, the function itself returns an integer status.

CREATE OR REPLACE FUNCTION test_sp (
num_1 IN NUMBER, -- input number 1
num_2 IN NUMBER, -- input number 2
the_sum OUT NUMBER, -- return the sum
the_diff OUT NUMBER -- return the diff
) RETURN NUMBER

� How do we use it from BasicQuery?

� {$PARAM[OUT,INTEGER]$ = call test_sp(8,-8,
$PARAM[OUT,INTEGER]$,$PARAM[OUT,INTEGER]$)}

—Note Oracle’s JDBC driver wants the braces ({}) around the
function call

� Where are the OUT parameter values displayed?
In the message area:

© Blue Slate Solutions 2006

11

Run Queries Repeatedly for Timings

© Blue Slate Solutions 2006

12

Collected Statistics

Query Timings

1

10

100

1000

10000

0 1 2 3 4 8 13 15

Query

M
il
li
s
e
c
o
n
d
s Process Time (ms)

DB Time (ms)

Stmt Setup Time (ms)

Stmt Access Time (ms)

Conn Time (ms)

© Blue Slate Solutions 2006

13

Agenda

� BasicQuery

� Operation

� Source Code

© Blue Slate Solutions 2006

14

Source Code Highlights

� java.util.PropertyResourceBundle to support
multiple languages

� Separate class loader for JDBC drivers

� Soft-reference based cache for holding results

� javax.swing.table.TableCellRenderer for
rendering data in JTable

� Apache Commons Pooling

� Log4j, JUnit and Cobertura

© Blue Slate Solutions 2006

15

java.util.PropertyResourceBundle

� Alternative to subclassing the ResourceBundle or
ListResourceBundle classes.

� Avoids hardcoding text in the ResourceBundle class

� Avoids needing to create your own property file interface
code to go between your proprietary property file and a
ResourceBundle class

� Note that a PropertyResourceBundle is the last option
checked by the environment, so a ResourceBundle
subclass will trump the PropertyResourceBundle for the
same language and locale.

© Blue Slate Solutions 2006

16

Isolating the Resource Access

� BasicQuery uses a class, Resources, to provide access to
the ResourceBundle-based information.

� Overridden getString() method takes the resource key and
optionally 1 or more text arguments.

� getString() then uses java.text.MessageFormat to integrate
the arguments into the text.

� The developer of the resource must provide parameter
arguments ({0}, {1}, …) at the appropriate points in the text.

� These arguments must agree with the expected arguments
for the message as used in the source code.

� Example:

Resources.getString("msgParamInDesc", type + "", data)

� English (BasicQueryResources_en.properties)

msgParamInDesc=In Parameter: {0}:{1}

� French (BasicQueryResources_fr.properties)

msgParamInDesc=Dans Le Paramètre : {0}:{1}

© Blue Slate Solutions 2006

17

java.lang.ClassLoader

� Abstract class for loading classes
� Subclass it in order to create your approach to loading classes

� Each class holds a reference to the class loader that provided it

� Typically override findClass() when creating your own
ClassLoader subclass.

� BasicQuery has a DynamicClassLoader class to deal with the
JDBC driver classes
� Issue is that the set of driver libraries is not known until runtime so

they cannot be defined on the application’s classpath

� Actually leverages the java.net.URLClassLoader concrete class to
reference the libraries found in a JDBC libraries directory (configured
in BasicQuery’s properties file).

� The URLClassLoader is responsible for loading these classes while
the DynamicClassLoader class overrides the loadClass() method to
intercept the request for a class.

� First the system class loader is checked, and if the class is not found
the URLClassLoader instance is used.

© Blue Slate Solutions 2006

18

Using the DynamicClassLoader Instance

DynamicClassLoader dbClassLoader;

dbClassLoader = new

DynamicClassLoader(archives);

…

constructDriver =

Class.forName(driverClass, true,

dbClassLoader).getConstructor(null);

DriverManager.registerDriver(new

DynamicDriver((Driver)constructDriver.

newInstance(null)));

© Blue Slate Solutions 2006

19

References

� From the java.lang.ref package documentation…

� An object is strongly reachable if it can be reached by some thread
without traversing any reference objects. A newly-created object is
strongly reachable by the thread that created it.

� An object is softly reachable if it is not strongly reachable but can
be reached by traversing a soft reference.

� An object is weakly reachable if it is neither strongly nor softly
reachable but can be reached by traversing a weak reference.
When the weak references to a weakly-reachable object are
cleared, the object becomes eligible for finalization.

� An object is phantom reachable if it is neither strongly, softly, nor
weakly reachable, it has been finalized, and some phantom
reference refers to it.

� Finally, an object is unreachable, and therefore eligible for
reclamation, when it is not reachable in any of the above ways.

© Blue Slate Solutions 2006

20

java.lang.ref.SoftReference

� Wrapper around object reference
Object obj = new Object();

SoftReference soft = new SoftReference(obj);

obj = null;

� The Object instance is now softly reachable (no strong
references exist).

obj = soft.get(); // Will return instance or null

� No control over when the reference will be cleared.

� Guaranteed that GC cycle will have reclaimed all softly
(or weaker) referenced objects before throwing an
OutOfMemoryError.

© Blue Slate Solutions 2006

21

Leverage Soft References

� Quick way to add a memory-sensitive cache
� Not much code to write in order to wrap and then retrieve instances
� Must always test returned instance in case null (instance was cleared).
� BasicQuery uses this in the QueryHistory class which holds one query in

the history list as well as its results (wrapped in a soft reference)
public void setResults(TableModel pResults) {

results = new SoftReference(pResults);

}

public TableModel getResults() {

return (TableModel)results.get();

}

� When Retrieving the Cached Results
histModel = ((QueryHistory)historyQueries.

get(histPosition)).getResults();

if (histModel != null) {

sorter = new TableSorter(histModel);

…

}

© Blue Slate Solutions 2006

22

javax.swing.table.TableCellRenderer

� Interface defining the method:

getTableCellRendererComponent(JTable table,

Object value, boolean isSelected, boolean

hasFocus, int row, int column)

� The method’s job is to obtain the rendering component,
place the value in it and return the instance

� Renderer’s job is to represent value as appropriate.
For instance if value is a number it may be represented
as a color, dial position, digits, …

� Must design the renderer component to be very
efficient, it is called for every visible cell on the table
whenever the table is redrawn (invalidating window
sections, scrolling, …)

© Blue Slate Solutions 2006

23

ColoredCellRenderer

� BasicQuery combines the TableCellRenderer and the
actual rendering component in one class.

� Extends JLabel and implements TableCellRenderer

� The underlying implementation actually uses the same
renderer instance for all cells

� Very efficient – but beware side effects

� Don’t hold any cell data in your rendering component
unless you think very carefully about how you associate
it with the cell.

� ColoredCellRenderer does hold data related to the
foreground and background color to be used, but that
is determined by row of each call.

© Blue Slate Solutions 2006

24

getTableCellRendererComponent()

public Component getTableCellRendererComponent(JTable
table, Object value,

boolean isSelected,

boolean hasFocus, int row,

int column) {

if (value != null) {

setText(value.toString());

} else {

setText("");

}

setColor(table, isSelected, hasFocus, row, column);

return this;

}

© Blue Slate Solutions 2006

25

Apache Commons Pooling

� Generic Pooling: org.apache.commons.pool

� DB-centric extensions: org.apache.commons.dbcp

� Allow pool to be defined in XML file or created
dynamically.

� Currently BasicQuery creates the pool dynamically
based on connection URL and id/password provided.

� Allows performance testing timings to be applicable to
systems where a connection pool is being used

© Blue Slate Solutions 2006

26

Dynamically Creating the DB Connection Pool
private void setupDBPool(String connectURI, String userId, String password) throws
SQLException {

GenericObjectPool connectionPool = new GenericObjectPool(null);

configurePool(connectionPool, connectURI, userId, password);

PoolingDriver driver = new PoolingDriver();

driver.registerPool(DBPOOL_NAME, connectionPool);

}

private void configurePool(GenericObjectPool connPool, String connectURI, String
userId, String password) throws Exception {

String lowerCaseConnectURI, validationQuery;

lowerCaseConnectURI = connectURI.toLowerCase(); validationQuery = null;

if (lowerCaseConnectURI.startsWith("jdbc:sybase")) {

validationQuery = "select getdate()";

} else if … { … }

connPool.setWhenExhaustedAction(GenericObjectPool.WHEN_EXHAUSTED_BLOCK);

connPool.setMaxWait(5000); connectionPool.setMaxIdle(1);

DriverManagerConnectionFactory connectionFactory =

new DriverManagerConnectionFactory(connectURI, userId, password);

PoolableConnectionFactory poolableConnectionFactory = new

PoolableConnectionFactory(connectionFactory, connPool, null, null,
false, true);

if (validationQuery != null) {

connPool.setTestOnBorrow(true); connPool.setTestWhileIdle(true);

poolableConnectionFactory.setValidationQuery(validationQuery);

}

}

© Blue Slate Solutions 2006

27

Obtaining a Connection from the Pool

Connection conn;

conn = DriverManager.getConnection(

"jdbc:apache:commons:dbcp:" +

DBPOOL_NAME);

© Blue Slate Solutions 2006

28

Log4J, JUnit, Cobertura

� Well documented tools

� Other CDJDN presentations cover JUnit and Cobertura

